GOAL
Transport needs for an ageing society action plan
As the number of elderly in Europe increases, so does the need to address the considerable challenges this will present for future transportation systems. In order to keep older people actively involved in their daily activities, it is vital that they are able to travel and have access to acceptable levels of mobility. The EU-funded project GOAL provides an important contribution to this challenge: GOAL developed an action plan to fulfill the transport needs of an ageing society.

Older people are usually regarded as a group with particular limitations and needs, especially in terms of mobility. Therefore, taking into account the elderly population’s specific requirements is of great importance to transportation research projects. GOAL did this by developing five comprehensive profiles of older people.

The action plan that lies in front of you is the result of a very fruitful cooperation between experts in the consortium, supporting partners representing stakeholders from Japan to the USA, and a lot of interaction with external experts in the 6 GOAL workshops that were organized in the last two years. I would like to thank them all for their valuable contributions.

The action plan consists of seven actions that identify knowledge gaps and research needs. I am convinced that this action plan will help policy makers on European and national level, researchers, transport industry and service providers in being prepared to face the challenge of an active and mobile population. Now and in the future.

Marika Hoedemaeker
project coordinator of GOAL
Current predictions show that the share of people aged 65 years or over in the total population (EU-27) is projected to increase from 17.5% in 2010 to 29.5% in 2060 (Figure 1). Similarly, the number of people aged 80 years or over is expected to grow from 4.8% in 2011 to 12% in 2060. In order to keep older people actively involved in their daily activities, it is vital that they are able to travel and have access to acceptable levels of mobility. These demographic changes produce considerable challenges for future transportation systems and place new and growing demands on transport systems.

According to an OECD report (2001), on the whole, older people who drive will prefer to continue doing so for as long as possible and will also expect to have access to alternative transport modes that meet their individual needs, especially as they approach 80 years of age. Future transport systems and services will play an essential role in supporting independent, healthy ageing.

The GOAL project (Growing Older, stAying mobiLe: Transport needs for an ageing society) aimed at comprising current knowledge and identifying research gaps in order to develop an action plan to fulfill the transport needs of an ageing society.

This action plan is being developed through the interaction with different stakeholders, state-of-the-art reviews, identification of possible and relevant societal developments and alternatives to transport. To achieve these objectives, GOAL has organised different workshops where the main findings from state-of-the-art reviews were presented to key stakeholders and interactive sessions were played to get their feedback. The resulting findings have been gathered in different deliverables available on the GOAL website (www.goal-project.eu).

This action plan summarizes the key findings of the GOAL project with regard to each of its main activities dealing with transportation options and services for older people. We refer to the deliverables of the project for further relevant references to literature and to important websites and projects involving the mobility of an ageing population. The action plan also includes the valuable feedback of some GOAL supporting partners and stakeholders.

![Figure 1: Trends in the population aged 65+ as a share of the total EU-27 population, 2010-2060 (Eurostat, 2013)](image-url)
This action plan presents seven research actions that need to be addressed because of the considerable transport challenges we face by the growth of the older people population in the coming decades.

The seven research actions should be taken forward immediately if we are to understand and exploit the opportunities to enable older people to enjoy safe, sustainable and socially satisfying lifestyles. When we have looked further into the future, these same building blocks of fundamental understanding remain crucial for all the potential long term scenarios that we have identified within the GOAL project.

These are the research actions:

1) Develop databases on walking and cycling behaviour by older people
2) Identify motivators for walking and cycling for older people
3) Investigate the transition behaviour from car to other modalities
4) Develop methodologies to assess the benefits of public transport accessibility measures
5) Identify the requirements for travel information and social media suitable for older people
6) Assess the impact and potential of future technology for the older driver
7) Develop driving screening and assessment tools and programs
GOAL
work packages

Work package 2: Characteristics of older people

Work package 2 developed five profiles of typical characteristics of older people. The analysis was based on available literature and large European databases, e.g. datasets from the SHARE project including 20 European countries and more than 55,000 individuals. These five profiles that derived from statistical cluster analysis have been advanced by adding findings from the literature concerning physical and mental barriers, regional and socio-demographic differences, transport, life satisfaction and living environment.

Work package 3: Driving

Keeping older people driving safely is a key challenge in the objective of extending autonomy, independency and good quality in living at a high age. An integrated strategy including in-car solutions, road infrastructure and fitness-to-drive screening and assessment among the older drivers will ensure that older people will be able to drive longer, while driving safely.

Work package 4: Public transport, walking and cycling

This work package reviewed which public transport, cycling and walking facilities, systems and services are available and how effective they are in meeting the needs of the older people. Public transport, walking and cycling is important to older people’s quality of life. Access to this type of mobility can help older people to avail themselves of goods, services, social events and other activities. Furthermore, it increases independence and autonomy and improves health and fitness.

Work package 5: Traveller information and guidance

In order for an older person to make a successful journey, they need to have knowledge of the transport options which are available to them and which meet any special needs they may have. They will also need knowledge to support the access to the services and for them to complete the journey effectively. This work package addressed the ways in which such information and guidance can be obtained, integrated and used.

Work package 6: Future services and mobility opportunities

In the future, new technologies and services will be available for older people, which will have an impact on their mobility. Arising technology advances may not sufficiently satisfy the mobility needs of future older people, and create the conditions necessary to maintain a high mobility level and their independence in everyday life. This thorough review studied a large number of future scenario studies to identify what technologies and related actions may be able to be adapted or refocused to better support the needs of the future older people.

Work package 7: Transport needs of older people

Research gaps that were identified in each of the modalities of the GOAL study were used to develop the action plan indicating the relevant knowledge gaps and research needs providing guidance on transport needs for older people. This work package also identified implementation possibilities including possible conflicts with other objectives such as environmental consequences or social-economic developments.
When evaluating current developments of solutions to fulfil the transport needs of an ageing society, it is vital to gain comprehensive insight into the characteristics of the group of older people. Basically, the group is merely defined by age and includes a wide range of different characteristics, comprising highly unsimilar types like physically fit and active seniors as well as frail and immobile seniors suffering from physical or mental limitations.

In order to thoroughly provide for the specific, heterogeneous and varying requirements of older people, the project has started with the development of distinguishable and internally cohesive types of the older people. The profiles of older people resulting from this work represent typical combinations of mobility-related characteristics and have subsequently been used to explore in a structured way the needs while driving, using public transport, walking and cycling and the relevant information needed before and during travel.

Identification of Profiles

The intention of developing comprehensive, multifaceted and well-grounded profiles required the inclusion of different information sources. The initial identification of common sets of characteristics in the older population in Europe has been based on a cross-national panel database comprising data on health, socio-economic status and social and family networks of more than 55,000 individuals from 20 European countries aged 50 or over: the SHARE database (Survey of Health, Ageing and Retirement in Europe). These first types derived from statistical cluster analysis have been advanced by adding findings from the literature concerning physical and mental barriers, regional and socio-demographic differences, transport, life satisfaction and living environment from more than 70 relevant international publications, studies and reports.

Relevant aspects which have not been covered by the database or the information from the literature finally been addressed in two small-scale transnational surveys (among older people as such and among experts and intermediaries working with older people) as well as in the course of two workshops aiming at the discussion of the profiles at different stages of their elaboration. Eventually, the profiles consisted of a broad range of mobility-related features, providing a comprehensive and holistic insight into the living conditions of older people in Europe and the consequential effects on mobility options, behaviour patterns and transportation needs. Table 1 shows the main sources of information that have been included in the analysis and development of the profiles.

Profile Descriptions

In total, five internally cohesive profiles have been identified and elaborated. The profiles include specifications concerning demographics, physical and mental health, social life, living environment, mobility-related aspects as well as transition points (life-changing events causing transitions in the profile affiliation). Figure 2 illustrates the five profiles in relation to two substantial characteristics: predominant range of age and level of activity.
The youngest, healthiest and the most active group is denoted Fit as a Fiddle (FF). The profile named the Care-Full (CF) contains the frail, impaired and immobile very old ones, who are dependent on the help of others. The members of the profile an Oldie but a Goodie (OG) are quite mobile and independent despite their old age. In the Happily Connected (HC) group are the fit, active and satisfied elderly with excellent social networks, and the profile Hole in the Heart (HH) includes older people suffering from mental as well as severe physical problems in younger ages. Each of the five profiles is now described in more detail.

The group members have a comparably high income and are satisfied with their autonomy and their quality of live. Furthermore, they are very active and have excellent social networks. Technologies are used regularly but the amount of the usage depends on experiences. Main life-changing events are retirement or illness / death of a close person. The profiles Happily Connected or Hole in the Heart are the most likely to follow.

Hole in the Heart (HH)

Despite their relatively young age (50 to 75), the members of this group suffer from pain and illness and are severely limited in activities. Chronic diseases like fatigue, diabetes, obesity or cardiovascular disease are often diagnosed among this group. Besides the physical problems, many group members are depressed, have fears and feel lonely. Limited activities and mobility problems also may lead to exclusion of participation in social life.

The car is the preferred mode of transport because it is more comfortable and easier to use than public transport, but the risks for accidents of drivers in this profile increases. When members of this profile are not able to drive any more they use public transport only if they have made experiences in using public transport services before. Because of their health problems, the number of trips is reduced, they are shorter and there are more trips to hospitals and medical facilities. Members of this profile have the most problems coping with life-changing events like retirement, illness or the loss of the partner. If the physical and mental state of health gets worse, they will end in the Care-Full group, but therapy, support groups or new social contacts may change the situation and they can reach the Happily Connected or the Oldie but a Goodie group.
Happily Connected (HC)

This profile is characterised by a very active and social lifestyle. Most of the group members are between 60 and 75, are married or live in a partnership. The family and especially the care for their grandchildren are very important. Besides that, this group has a very active social life doing volunteer work, helping friends and neighbours, being members of seniors’ clubs and organisations. All these activities and their good health lead to a high life satisfaction.

Driving is the most important transport mode, where the men are the primary drivers and their women are mainly passengers. The members of this group do a large number of car trips and complex trip chains, but they are driving fewer kilometres than younger drivers and they are favouring calmer roads and avoiding traffic peaks and night time driving. After retirement they do more things on foot. The usage of technology is high among this profile compared to the other groups but there are differences within the group, depending on the experiences from former jobs etc.

The internet, navigation systems and route planners such as driving assistance systems and e-bikes are used. Retirement and the loss of social contacts as well as injuries or illness are important live-changing events. Profiles like Hole in the Heart or the Care-Full may follow after worsening of the state of health. After the death of the partner or loss of social contacts they might get into the profile an Oldie but a Goodie if they are still active and independent.

An Oldie but a Goodie (OG)

The members of this group are aged 80 to 90. Most of them are female and are living single. Despite of their high age, they are quite healthy and they are not severely limited in activities. Caused by their living alone, they are forced to manage daily live without support of others and to leave the house or flat. Walking and public transport (except underground) are their preferred modes of transport. Members of this group do not have as much contact to family and friends (compared to other groups) but they are active in clubs and organisations. They do less and shorter trips and use the time periods between rush hours.

The high live satisfaction and self-efficacy of this group influences their physical health and their mobility in a positive way. Members of the Oldie but a Goodie profile avoid technologies and unknown trips if possible. The death of a close person or a severe illness could be incisive transition points after those people may leave this profile and change to the Care-Full group.

The Care-Full (CF)

This is the group of the very old (age group 85 to 100) and frail elderly, who suffer from severe physical and mental diseases such as dementia, Alzheimer’s disease, senility or Parkinson. The eyesight and the hearing are bad. Most members of this group depend on care, assistance and help of others. Caused by the diseases and mobility limitations the members of this group do not leave their homes very often. When they do so, most of them need assistance from their families (lift in cars) or they use special transport services. Usually, the very old are doing passive activities in their homes like watching TV, listening to the radio or reading newspapers.

There is a high risk of social isolation, which is why this group especially likes receiving visitors. It is hard to leave this group again. Improvement of the physical and mental health conditions and less dependency on others may in some cases lead to the Oldie but a Goodie group.

Comparison of Profiles

The comparison of the profiles reveals important facts that constitute the necessity of developing solutions which are targeted to the specific needs of different types of older people. For example, as the financial resources are strongly linked with employment, the “younger” profiles (e.g. FF) have no problems to make ends meet, while the financial situation is worse for the HH group, where many are retired, unemployed or permanently sick in younger ages. Although health is generally closely related to age, members of the OG profile are still relatively healthy until high ages and the HH group has to face health problems in younger ages.

Eyesight and hearing related problems as well as dementia and Alzheimer’s can be observed in the OG and the CF groups. Worse (physical and mental) health conditions can be found in the CF profile. In general, driving is rated as very important among all profiles. The lowest car dependency can be observed in the OG profile, where the public transport usage is comparably more frequent and most trips are done on foot. Gender-related differences in private transport are distinct in the HC and to some extent in the OG group, where men are the main drivers and women are passengers.

Table 2 shows a qualitative estimation of feature-related tendencies in the profiles in relation to the average older person and allows a general comparison of important factors determining the belonging of older people to the profiles.
<table>
<thead>
<tr>
<th>Demographics</th>
<th>Fit as a Fiddle</th>
<th>an Oldie but a Goodie</th>
<th>Hole in the Heart</th>
<th>The Care-Full</th>
<th>Happily Connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>main age group</td>
<td>50-59</td>
<td>80-90</td>
<td>50-75</td>
<td>85-100</td>
<td>60-75</td>
</tr>
<tr>
<td>financial resources</td>
<td>+++</td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>still employed</td>
<td>+++</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>household information</td>
<td>married or in partnership</td>
<td>single</td>
<td>o</td>
<td>single</td>
<td>married or in partnership</td>
</tr>
<tr>
<td>health</td>
<td>general health</td>
<td>+++</td>
<td>+</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>eyesight and hearing</td>
<td>+++</td>
<td>--</td>
<td>o</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>limitation in activities</td>
<td>-- --</td>
<td>+</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>suffer from pain</td>
<td>-- --</td>
<td>--</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>dementia / Alzheimer’s</td>
<td>-- --</td>
<td>+</td>
<td>--</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>drugs needed</td>
<td>-- --</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>mobility aid needed</td>
<td>-- --</td>
<td>+++</td>
<td>o</td>
<td>+++</td>
</tr>
<tr>
<td>transport</td>
<td>importance of driving</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>importance of public transport</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>importance of walking</td>
<td>--</td>
<td>+++</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>number and length of trips</td>
<td>+++</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>purpose of trips</td>
<td>work, leisure, socializing (no difference to average society)</td>
<td>socializing, shopping, religious services</td>
<td>many trips to hospitals, medical facilities</td>
<td>many trips to hospitals, medical facilities, religious services</td>
</tr>
<tr>
<td>environment</td>
<td>problems with infrastructure barriers</td>
<td>-- --</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>afraid of assault / crime</td>
<td>-- --</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>satisfaction & mental health</td>
<td>+++</td>
<td>++</td>
<td>-- --</td>
<td>-- --</td>
</tr>
<tr>
<td></td>
<td>social networks (friends, neighbours, family...)</td>
<td>++</td>
<td>++</td>
<td>(family mainly)</td>
<td>(family only)</td>
</tr>
<tr>
<td></td>
<td>activities (clubs, volunteering, religious organisations,...)</td>
<td>+++</td>
<td>+</td>
<td>--</td>
<td>-- --</td>
</tr>
<tr>
<td></td>
<td>independency</td>
<td>+++</td>
<td>+</td>
<td>--</td>
<td>-- --</td>
</tr>
<tr>
<td></td>
<td>technology usage</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>o</td>
</tr>
<tr>
<td>transitions</td>
<td>live changing events</td>
<td>retirement, birth of grandchildren, severe illness</td>
<td>severe illness, death of a close person</td>
<td>severe illness, loss of social contacts, death of partner</td>
<td>illness, need for (nursing) care, loss of social contact</td>
</tr>
<tr>
<td></td>
<td>follow-up profiles</td>
<td>Happily Connected, Hole in the Heart</td>
<td>The Care-Full</td>
<td>The Care-Full</td>
<td>an Oldie but a Goodie, Hole in the Heart, the Care-Full</td>
</tr>
</tbody>
</table>

Table 2: Overview of profile characteristics
Evolution of GOAL profiles

In order to identify actions in favour of future older people, it is necessary to develop profiles of future older people, specifically to 2030 and 2050 as these are the target time horizons for the project. In order to develop profiles of future older people a specific expert panel was organized during the fifth project workshop. The profiles were developed based on the current profiles of older people, the information gathered during the expert panel and the quantitative data available from the official reports of the European Commission.

From the 2012 Ageing Report of the European Commission, the information on the demographic changes (Figure 3) and the changes in the retirement age were specifically relevant. Current profiles were used as baseline since the expert panel stated that no new older people groups will appear in the future decades, but rather the features of the profiles will change.

In 2060 the retirement will be generally postponed all over Europe: while in 2010 the retirement was between 58 and 64 years old, in 2060 it will be in the range 61-67 years old, coupled with a diminished difference between male and female workers.

Figure 3: EU27 Population by age groups and sex, in 2010 and 2060 [Eurostat, 2013]
The older people considered in the profiles will grow from 183 millions in 2010 to 220 millions in 2030 and 237 millions in 2050. The pure effect of demographic changes, applied to the current structure of profiles, would provide the subdivision of older people into groups shown in Figure 4. In case that also societal changes are included in the forecast (i.e. changes of age distribution of the profiles because of various factors, e.g. employment, health), the distribution and relative importance of profiles is shown in Figure 5.

In absolute terms all the profiles are increasing from 2010 to 2030 and 2050, with the exception of the Happily Connected, which slightly decreases in 2050 compared to 2030. In relative terms the Oldie but a Goodie and The Care-Full experience the highest percentual change with increase of 66% and 78% respectively in 2050 on 2010 data (Table 3).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>64.1</td>
<td>55.8</td>
<td>28.4</td>
<td>23.2</td>
<td>11.6</td>
</tr>
<tr>
<td>2030</td>
<td>73.3 (+14.4%)</td>
<td>61.7 (+10.5%)</td>
<td>39.7 (+39.9%)</td>
<td>29.2 (+25.8%)</td>
<td>15.9 (+37.8%)</td>
</tr>
<tr>
<td>2050</td>
<td>77.8 (+21.4%)</td>
<td>60.5 (+8.4%)</td>
<td>46.9 (+65.4%)</td>
<td>31.9 (+37.6%)</td>
<td>20.3 (+75.6%)</td>
</tr>
</tbody>
</table>

Table 3: Numerosity of the profiles and relative variation referred to 2010 data [UNIFI, 2013]
In the following the main trends of change within each profile is described. A pictorial view of the profiles in 2050 is shown in Figure 6.

Fit as a Fiddle (FF)

The members of this group will increase their average activity level and health condition, as a result of multiple factors (e.g. improvement of the healthcare system compared to previous generations, change in the retirement age). Especially the reorganization of the pension schemes throughout Europe will keep people at work for a longer time, forcing them to be active participants of the society. Thus this group will steadily expand its most representative age group from 50-60 to 50-65 in 2050. Although the large majority of the people will still be in the labour force, full time employment will not always be achieved. Also an increase of single households will take place as lifestyle change. These two factors, which erode the purchasing power, will trigger some additional modifications in lifestyle, namely in mobility, where car will still be the most used transport mode, but progressively less dominant because of an increased use of public transport and other shared transport modes. Multimodality will be more appreciated since it will be supported by information technology, which will be regularly used since, already in 2030, this group can be considered digitally native.

Hole in the Heart (HH)

The age range of this group is not going to change in time, but a change in the activity level will take place. Specifically the profile members affected by physical problems, rather than mental ones, will improve their involvement in the society also as an effect of the already mentioned changes in the pension schemes. This beneficial effect will be supported by the increasing diffusion of information technology.

With reference to technology use, the youngest members of the profile will already be digitally native in 2030, while the older group members were exposed to technology for a long period of their lives and thus they are highly experienced users. Situation will further improve shifting to 2050. Technology will have several positive impacts on group members since: will facilitate the participation to social life through virtual communities; it will be an enabling factor for telework and thus it will allow general improvement of living conditions (e.g. better income, self-respect and sense of independence, improved access to general information). On the other side obesity and depression will add to the list of disabling illnesses of this many-faceted group.

The continuous need for cares and medical expenses will still limit the expenditure for other activities and for mobility. In this respect the increased access to technology will also facilitate the transition to public transport since they will have better access information for trip planning. New, electrically powered, personal mobility solutions will support the mobility of group members in the short range, improving the quality of their life and social inclusion in the neighbourhood.

Happily Connected (HC)

The main characteristics of this group will still be in place and possibly improved in 2030 and 2050: the average activity level will increase and the social lifestyle will be unspotted. In addition the most representative age group will shift from 60-75 to 65-80, in line with the changes of the Fit as a Fiddle group. The increasing geographical extension of family and friends network will cause an increase of international trips, mainly by plane.

In 2050 the usage of technology will be high since most of the group members will be almost digitally native. Car will still be a widely used transport mode, but a rebalancing among drivers will take place with female being more active and not anymore only on the passenger side.
An Oldie but a Goodie (OG)

This profile will extend towards the older age, including a increasing share of people, who are too fit to go in The Care-Full profile. Nonetheless the most representative age group will still be the 80 to 90 one. The social lifestyle will not change in the next decades, rather the tools available to pursue their daily tasks.

Technology will have an increasing role: in 2030 the usage will still be dependent on former experiences, while in 2050 the youngest members of the profile will be digitally native. Technology is going to impact on their mobility patterns since they typically avoid unknown trips, if possible, but not if adequate in travel information and assistance is provided. Thus information technology could remove barriers to mobility and help them to widen their mobility and to improve their independence.

The Care-Full (CF)

Physical and/or mental barriers will still characterise this profile. Available opportunities created by future technological and societal developments will not be exploitable without the support of other people (e.g. relatives or employees of the social security system). However, when adequately supported, the mentally fit part of the group will benefit from new communication technologies to stay in touch with their relatives.

In addition technological development will also offer new opportunities for healthcare (e.g. e-healthcare, remote monitoring systems, etc.), although the practical implementation can be restrained by economical factors both at national and personal level. In general terms the profile will shift towards an higher average age and will experience a slightly higher activity level.

Figure 6: Profiles of Older people in 2050 pursuant to age and activity level (dashed the current position of the profile)
Develop databases on walking and cycling behaviour by older people

1.1 Motivation

Walking and cycling can be used as modes to achieve a specific journey purpose, or can be taken up as activities in themselves for exercise. They can be particularly relevant modes for older people because of the health benefits and low costs. However, despite being healthy and sustainable modes of transport, there is little current knowledge concerning behaviour patterns, traveller requirements and the risks involved with walking and cycling, particularly for older people. Related accident data is usually collected only as part of road traffic accident databases, may be incomplete, and the level of relevant detail varies considerably between countries. Databases appropriate for older people are needed if effective decisions are to be made and the outcomes monitored. Knowledge of the nature, scale and location of behaviour, and of accident characteristics would enable appropriate remedial measures and guidance to be identified, justified and promoted.

1.2 Scope and content

The research will identify the scope and content of new comprehensive and integrated databases on walking and cycling for older people and demonstrate their practicality and effectiveness. Information will include details of the infrastructure available, trip-making behaviour disaggregated by trip characteristics (i.e. trip length, frequency, purpose), and accident data - including single accidents (e.g. due to falls) and minor accidents not normally recorded, but which could be a barrier to subsequent walking and cycling trips by older people. For cycling disaggregated information is needed on ‘vehicle’ type, such as tricycles, mobility scooters, partially and fully electric bicycles, and electric wheelchairs as well as their characteristics, i.e. dimensions, weight, power, speed and acceleration.

The databases will relate physical infrastructure and service provision, to the metrics of behaviour and the reasons for behavioural decisions. Whilst, a single ‘snapshot’ of data would provide key information for effective support action for the older people, the databases should be set up in such a way that they can be maintained. This will enable behavioural drift and the effectiveness of remedial measures to be assessed over time. Also, this will enable assessments to be made of accident risk factors including walking/cycling history, exposure to risk by location/timing of the journey, the physical and mental competences of the individual involved and the long and short term physical and attitudinal impacts of accidents on the lifestyles of older people.

The research will specify the characteristics of the databases in terms of structure and content in association with the stakeholder groups who would be particularly interested in their use. Practical consideration will include data sources and resourcing. Developing a plan to take forward the database into the long term future is particularly relevant. E.g. placing database and its contents within a context of user groups such as expert centres, policy makers and practitioners who focus on issues such as how to improve traffic safety for older pedestrians and cyclists. The task will include a demonstration of the development of data collection methods which
should include: peer-to-peer involvement, development of a tool to provide walking and cycling quality ‘contour maps’ for older people, surveys of accident characteristics and assessment of the medical conditions of those involved. Examples of the development and application of the database will be particularly important.

Separate databases will be set up for walking and cycling.

1.3 Expected impacts

The databases will enable coordinated multidisciplinary analysis for a range of different aspects of walking and cycling by older people that can be used to:

1. Development of guidelines and/or standards for the provision of (safe) walking and cycling.

2. Development of an audit tool to provide guidance for older people on the quality (or difficulty) and safety of different walking and/or cycling choices.

3. Identify and justify remedial measures related to infrastructure and control.

4. Identify the need for specific design features of cycles/cycling equipment for the older cyclist.

5. A demonstration which will act as a showcase for further implementation across European countries.

This action addresses the following Commission policies and actions:

- Policy 3.1: transport accessibility and mobility, for cities to promote the use of cycling, walking and alternative forms of transport, taking into account those without cars or unable to drive (e.g. older people and those with mobility impairments), and to facilitate autonomy without reliance on the private car. (Cohesion Policy and cities: the urban contribution to growth and jobs in the regions. COM 385, EU, Brussels, 2006)

- Strategic objective 7: protect vulnerable road users - elderly people and people with disabilities: the ageing population is putting an urgent emphasis on the need to assess older people’s vulnerability in traffic. The Commission will make proposals to increasing the safety of cycling and other vulnerable road users, e.g. by encouraging the establishment of adequate infrastructures. (Towards a European road safety area: Policy orientations on road safety 2011-2020. COM 389, EU, Brussels, 2010)

- Initiative 16: move towards a “zero-vision” on road-safety, by paying particular attention to vulnerable users, including cyclists, through safer infrastructure and vehicle technologies, and developing a comprehensive strategy of action, including common definitions and classifications, in view of adopting an injuries reduction target. (Roadmap to a Single European Transport Area - Towards a competitive and resource efficient transport system. EU White Paper. COM 144, EU, 2011)

- Action 3.4: develop appropriate measures including best-practice guidelines concerning the impact of ITS applications and services on the safety of vulnerable road users, including cyclists and persons with disabilities or reduced mobility and orientation. (Intelligent Transport Systems in action. Final Report, EU, Luxembourg, 2011)

Type of call
STREP (2nd call – 4 years duration)
2.1 Motivation

There is little knowledge concerning the factors which motivate and encourage different groups of older people to walk or cycle. However, there is some evidence that older people with limited physical and/or mental competence are particularly influenced by the quality of the walking and cycling environment. There may be simple ways in which this may be designed or manipulated to encourage walking.

For example, gentle slopes of foot and cycle paths, non-slippery surface, use of large street trees for comfort and amenity (e.g. shade), availability of spots to rest (e.g. seating) and priority for pedestrians and cyclists could encourage older people to walk and cycle more. Encouragement and training programmes could lead to older people giving greater consideration to walking and cycling as viable transport options. More insight into motivation could contribute to designing effective encouragement and training programmes. This in turn would bring the physical and mental benefits associated with exercise.

2.2 Scope and content

Research is needed to identify motivators for walking and cycling in a holistic and user-centred way. Hence this research will focus on a) identifying urban design features which act as enablers to encourage walking and cycling, b) developing motivational programs and campaigns (e.g. training programs) which are tailored to raise awareness and effectively encourage walking and activate older people to cycle, and c) to evaluate the interconnected effects.

Studies in real and virtual environments should be used to identify and quantify the impacts of relevant urban design features on walking behaviour and cycling for older people. Novel approaches to data collection including physical measurements of satisfaction may also be considered. Issues such as gradient, texture, surfacing, and environment will be studied to better understand their impact on behaviour. Stated preference studies and focus groups can contribute to more holistic understandings of behaviour regarding trip and mode choice of the target groups of older adults. Findings should discover how urban design features relate to mobility behaviour and actual and perceived safety concerns. Thus, results could be used to create design guidelines and standards for urban space which is not only free of environmental and infrastructural barriers, but which may also encourage older people to walk and cycle.

In order to promote walking more effectively, dedicated training programmes, campaigns or persuasive strategies will have to be developed and adopted related to the needs and competences of older people. This will raise awareness and activate older people to walk and cycle. Case studies will be carried out to evaluate and develop such measures in which interventions and training programmes will be tested in real-life settings.

By studying the variation of environmental features (i.e. elderly-adapted vs. non-elderly-adapted design) together with training programs and campaigns,
insights will be gained regarding the interconnected
effects of ‘urban design’ and ‘encouragement and tra-
ining’. These will be used to further adapt urban design
and campaigns to better suit older people.

2.3 Expected impacts

1. Increased walking and cycling by older people with
all the physical and mental benefits.

2. An increased awareness amongst planners and
designers of the importance of giving consideration
to older people of accidents to older drivers.

3. Reduced healthcare costs and improved active lifes-
tyle for the older people.

4. Decreased costs and increased effectiveness of
encouragement and training programs to stimulate
walking and cycling.

This action addresses the following
Commission policies:

- COM (2006) 385 final, Cohesion Policy and
Cities: the urban contribution to growth and jobs
in the regions, 3.1 Accessibility and Mobility

- COM (2011) 144 final, White Paper, Roadmap
to a Single European Transport Area – Towards a
competitive and resource efficient transport system,
2.4 – Clean urban transport and commuting

- Policy 3.1: transport accessibility and mobility, for
cities to “make the best use of all the transport
infrastructure”, and to “promote the use of walking
and alternative forms of transport”, taking into
account those without cars or unable to drive (e.g.
older people and those with mobility impairments).
(Cohesion Policy and cities: the urban contribution
to growth and jobs in the regions. COM 385, EU,
Brussels, 2006)

- Policy 2.4: clean urban transport and commuting:
facilitating walking should become “an integral
part of urban mobility and infrastructure design”,
and a mixed strategy involving land-use planning,
infrastructure for non-motorised modes (as well as
other factors) is needed to provide better mobility
planning.
(Roadmap to a Single European Transport Area
- Towards a competitive and resource efficient
transport system. EU White Paper. COM 144, EU,
2011)

Type of call
STREP (2nd call – 2 years duration)
3.1 Motivation

Many older people will eventually have to make a transition from using their cars for most or all trips to using other modes for at least some. This transition may be forced by health issues, simply occur because the responsibility of driving becomes too great, for economic reasons, or through choice. The characteristics of the transition will vary with personal conditions and experience.

For many, the transition from car to public transport, walking or cycling will be seen as negative and life changing. However, an early and positive approach to such a change could lead to a more satisfactory outcome in terms of both personal lifestyle, reduced accident risk and more sustainable transport. Research is needed to understand the circumstances of change which may trigger full or partial transitions from car to other modes. Further transitions may occur later in life if, for example, the use of public transport is no longer viable.

3.2 Scope and content

Studies will be needed to determine the circumstances of change, transitional changes in modal use, the reasons why such changes have, or have not, occurred and the factors of change which are seen by older people as either positive or negative. Trigger factors and how they may be able to be used more positively to support change in the future also need to be understood. Longitudinal surveys are not considered appropriate because of the timescales involved and the uncertain continuity which would be associated with the participants.

Large scale in-depth interviews should be carried out to gather retrospective insights into mobility transitions and changes. Prospective views and attitudes on how older people envisage future mobility changes and their hopes and fears will need to be understood. Large scale cross sectional surveys will be expected to be undertaken with appropriate consideration in the sampling frame of relevant social and economic, regional, and other factors. The roles of formal and informal support services, including family and friends should be explored.
3.3 Expected impacts

1. Development of guidelines for actions to support and encourage early transition from car to other modes of transport.

2. The development of knowledge on the fundamental understanding of the transition process.

3. The development of ‘toolkits’ based on best-practice experience to assist older people in transition phase.

4. More sustainable mode of travel by the older people.

This action addresses the following Commission policies:

- Policy 3.1: transport accessibility and mobility, to improve the effectiveness, affordability, efficiency, and safety of public transport, taking into account those unable to drive (e.g. older people and those with mobility impairments), and to facilitate autonomy without reliance on the private car. (Cohesion Policy and cities: the urban contribution to growth and jobs in the regions. COM 385, EU, Brussels, 2006)

- Policy objective 4.1: quality transport that is safe and secure, so that people with reduced mobility are "supplied with comfortable transport solutions", and provided with a safer and more secure environment which is conducive to greater use of public transport. (A Sustainable future for transport: Towards an integrated, technology-led and user-friendly system. EU, Luxembourg, 2009)

Type of call
STREP (1st call – 4 years duration)
4.1 Motivation

Public transport is important to the quality of life of many older people. It enables access to essential goods, services and employment and provides wider social benefits associated with freedom and independence. Using public transport can also encourage a more physically active lifestyle. Examples of good practice are embodied in a range of national and local guidelines for the implementation of facilities to improve accessibility to public transport for older people.

However, there is a lack of a holistic view of entire trips made by older people where a single small factor may lead to an unacceptable outcome. Actual and perceived issues relating to any aspect of the trip including safety and security may be crucial. There is a lack of an overall methodology to identify accessibility levels in a holistic way, as well as the ways in which problems may be overcome and the benefits generated.

4.2 Scope and content

The research will identify and explore the gaps in current knowledge on accessibility for older people in the context of a holistic approach. A methodology will be developed and tested which will address issues, remedial measures, and social and economic justifications for implementation. Identification of the level of perceived and actual safety and security concerns of older people and the best ways of mitigating them will be considered. For example, trips or falls in buses could be addressed by improving driving behaviour (e.g. by moderating acceleration and deceleration rates).

Good driving could be encouraged by measures such as monitoring, policing, controlling and introduction of accessibility/safety related Key Performance Indicators (KPIs) for public transport operators. In addition, methodology will be developed to assess the economic benefits of such measures in terms of improved quality of life (rather than traditional economic values of time savings). Issues such as walking and waiting conditions, journey recovery, perceived safety and the wellbeing engendered by knowing that a journey can be made, even if it is not actually made, will all be considered in a comprehensive approach. Special public transport trip quality indicators will be developed. It is expected that surveys will be undertaken to help in the development of the methodology and in its subsequent testing and validation. The methodology will be promoted widely with a series of stakeholders to ensure uptake.
4.3 Expected impacts

1. Improved accessibility to public transport will improve the quality of life of older people.

2. In addition tasks are listed which help in improving the safety of the older people using public transport.

3. Environmental benefits as bus patronage will be likely to increase.

4. A demonstration of improved accessibility of public transport will act as a showcase for further implementation.

5. The methodology will enable the levels of accessibility of public transport services for older people to be rated within the context of an holistic approach to journeys. This will in itself generate the pressure for cost reductions and for socially effective improvements to be made.

This action addresses the following Commission policies:

- Develop “products and services geared to the needs of older people” and invest in modern transport infrastructure and services to “facilitate access for all, while strengthening passengers’ rights”.
 (Dealing with the impact of an ageing population in the EU. COM 180, EU, Brussels, 2009)

- Initiatives 21 and 22: a “need to promote public transport” for an aging population, by improving the quality of transport for elderly people and those with reduced mobility, including “better accessibility of infrastructure”, and by defining the measures necessary for further integrating different passenger transport modes to provide “seamless door-to-door-mobility”.
 (Roadmap to a Single European Transport Area - Towards a competitive and resource efficient transport system. EU White Paper. COM 144, EU, 2011)

- Policy objective 4.1: quality transport, so that a safer and more secure environment is provided which is “conducive to greater use of public transport” and has “positive effects on people’s health and well-being”.
 (A Sustainable future for transport: Towards an integrated, technology-led and user-friendly system. EU, Luxembourg, 2009)

- Policy objective 4.2: a well-maintained and fully integrated network, so that new infrastructure is “planned and prioritised with a view to maximising socioeconomic benefits”, taking into account externalities and effects on the total network.
 (A Sustainable future for transport: Towards an integrated, technology-led and user-friendly system. EU, Luxembourg, 2009)

Type of call
STREP (1st call – 3 years duration)
5.1 Motivation

Older people with reduced physical and mental competences need to have available information which enables them to plan and complete a journey safely, comfortably and with confidence. Research has found that for older people in particular, the most valuable support for an unfamiliar journey is a guide (friend/family member etc.). This is not always possible, but the increasing use and access to a wide variety of social media may be able to perform a similar support service. This support may occur before, during and after a trip and may overcome the negative effects of uncertainty in making an unfamiliar trip or associated with journey recovery if an element of a familiar trip fails. Indeed, peer support in such circumstances may be particularly beneficial in providing the credible and relevant detail of information needed by others with similar physical and mental limitations. Related provision of travel information on items such as refuges, lighting, handrails, vehicle accessibility and toilets may be crucial to some travellers, as well as route, mode, time and cost details. A holistic approach with door-to-door consideration will be necessary as a single unacceptable element may make the whole journey unacceptable. will be necessary as a single unacceptable element may make the whole journey unacceptable.

5.2 Scope and content

The research will identify the information requirements for travellers with a range of physical and mental handicaps. This will include mode, route, reliability/journey recovery, environmental conditions and other factors necessary for a variety of journeys to be completed satisfactorily. Consideration will be given to information sources, their current and future developments and their availability and reliability.

The various ways of providing the information to travellers will be identified and tested, with particular concern for clear, unambiguous, timely guidance which will encourage walking, cycling and the use of public transport. This includes the human-machine interface (HMI) aspects of a full range of information systems and services. The extent to which existing information services are ‘fit for purpose’ in relation to older people will be assessed and how these services are already recognising the need to evolve to address the changing demographic of the travelling public will also be explored.

The research will also develop understanding of how older people’s engagement with social media is evolving over time and to what extent they were already being supported through their social networks before the arrival of Facebook, Twitter, etc., thereby judging what the added value of such social media is. A wide range of potential approaches to providing support through social media will be explored using survey and study techniques appropriate to older people. The approaches will include the use of information through
to the triggering of support intervention by other nearby individuals. The study techniques may include virtual journeys and roleplaying in addition to more conventional approaches. There will be a role for service suppliers to input, and a wide range of stakeholder organisations should be involved. Demonstrations of successful approaches will be given and business/implementation plans will be developed.

5.3 Expected impacts

1. An understanding of the requirements of travel information and social media systems/services suitable for older people.

2. An assessment of the extent to which such systems/services could encourage more travel, with the associated physical and mental benefits, and enable those currently disenfranchised from travelling because of the lack of suitable knowledge and guidance to travel.

3. The development of social network activities to remove the real and apparent risks associated with the travel of older people.

4. Increased usage of social media by older people by removing barriers e.g. fear and mistrust of technology.

5. A demonstration which will act as a catalyst for further implementation across Europe.

This action addresses the following Commission policies and actions:

- Develop products and services geared to the needs of older people and invest in modern transport infrastructure and services to “facilitate access for all”.
 (Dealing with the impact of an ageing population in the EU. COM 180, EU, Brussels, 2009)

- Initiatives 27 and 25: provide travel information to promote more sustainable transport behaviour and awareness of the availability of alternatives to individual conventional transport, and adopt an innovation and deployment strategy that involves smart mobility partnerships and demonstration projects for sustainable urban transport solutions.
 (Roadmap to a Single European Transport Area - Towards a competitive and resource efficient transport system. EU White Paper. COM 144, EU, 2011)

- Actions 1.1 and 1.2: provide real-time traffic and travel information to “allow Europeans to make well-informed decisions both before and during their journeys”, including the increase and optimisation of road data and its quality.

- Action 3.4: assess the impacts of ITS applications and services on the safety and comfort of vulnerable road users, including persons with reduced mobility and orientation, and propose, develop and detail targeted European action.

Type of call
STREP/DEMONSTRATION (1st call – 4 year duration)
6.1 Motivation

In-vehicle information systems (IVIS) and advanced driver assistance systems (ADAS) are intended to improve safety and enhance the driving experience. However, whilst there is evidence to support the effectiveness of such systems, interactions between drivers and these systems may lead to increased workload and distraction in some circumstances. Understanding the circumstances in which such effects occur and how they can be best managed for older people is particularly important, as older drivers generally have more difficulty in multitasking and in learning to use new technology.

An important challenge will be to have a user-friendly system approach in which workload and distraction are managed to the specific capabilities of older drivers. An example would be an intuitive (personalized) human-machine-interface (HMI) where the amount of information given to a driver relates to their individual competence, driving style and conditions. Whilst the rapid development of technology and more complex and congested traffic conditions mean that the risks of information overload and distraction is important for all road-users, such risks could quickly develop into critical situations for older drivers. Thus, older drivers need special and specific consideration. This may be particularly relevant if a transition involves use of a car club or occasional vehicle hire where the vehicle-to-vehicle technologies may not be consistent.

The increasingly practical vision of cooperative mobility is that in-car and on road sensors will support the road user when driving. Such cooperative systems have the potential to adapt to the performance of older drivers by, for example, operating on the assumption of appropriately reduced perception and reaction times. Cooperative signal controlled intersections that adapt in anticipation of potential crashes could be designed with consideration of the multi-tasking difficulties associated with older drivers when navigating intersections.

The technological developments of cooperative driving in conjunction with developments in automated/semi-automated driving will change the nature of the driving task considerably. It is necessary for older drivers to be taken into account by ensuring that they are able to cope with this technology and that their needs are considered when such functionalities are being developed.

6.2 Scope and content

Research will identify the capabilities of target groups of older drivers and the effects of experience, workload and distraction on their driving performance. These will be used to develop guidelines for optimal system design for a range of in-car systems, with a specific consideration towards the needs of the older people. The target groups will be based on the inter- and intra-individual differences in capabilities of older drivers taking into account the GOAL profiles. The effects of ageing on the ability to deal with an increased workload and distraction performance should be studied using a series of appropriate approaches and techniques.
Older people generally find adapting to change more problematic than younger people and the studies will include a focus on naturalistic driving, where the behaviour of road users can be observed unobtrusively in a natural setting for an extended period of time will be particularly important. (Such naturalistic driving studies should be conducted in a car similar to that of the drivers or, even better, they should be able to participate in their own cars). The research could develop understandings of the capabilities of older drivers and how these evolve.

Research will identify the use and acceptance of new cooperative and automated in-car technologies by older drivers. It will establish whether technology avoidance by future older generations can be or will be reduced, because of the increased use of different technologies at a younger age. Consideration will be given to find solutions for older drivers to better adapt and cope with the implementation of cooperative systems and automated driving. This will include the possibility of a future in which the vehicle fleet is fitted with a variety of levels of technology, and where, for example, older drivers in older vehicles will have to operate safely. Cost-benefit analysis should be performed and the total effect of cooperative systems on traffic safety should be researched.

6.3 Expected impacts

1. Research will lead to enhanced understanding of cognitive processes relevant to safe driving in older drivers and a more profound understanding how older drivers can be supported to keep driving safely.

2. Directions for the development of in-car systems that support older drivers in safe and comfortable driving, without increasing workload and distraction to an unacceptable level.

3. Promoting the automotive industry to develop in-car support systems with user interfaces which are based on general HMI guidelines.

4. Guidelines for the development of cooperative systems and automated driving that specifically includes the older driver.

5. Providing support and advice for older drivers to deal with cooperative driving and (semi) automation of driving.

This action addresses the following Commission policies and action:

- Policy Action Area 3: designing a safe Human Machine Interface (HMI) so as to ensure “the safety of vulnerable road users (such as the elderly)”. (Action Plan for the Deployment of Intelligent Transport Systems in Europe. COM 886, Final Report, EU, Brussels, 2008)

- Strategic objective 5: promote the use of modern technology to increase road safety: despite their positive contribution, the development of in-vehicle systems raises a number of concerns from the safety point of view (distraction, impact on training, etc.) which will require further consideration. (Towards a European road safety area: Policy orientations on road safety 2011-2020. COM 389, EU, Brussels, 2010)

- Action 3.3: define the required measures for the safe use and operation while driving of in-vehicle information, communication and navigation equipment, and contribute to the “revision of the existing recommendation on safe and efficient in-vehicle information and communication systems - the European statement of principles” and any potential “regulatory measures to facilitate the implementation of the principles”. (Intelligent Transport Systems in action. Final Report, EU, Luxembourg, 2011)

- Policy objective 4.1: quality transport that is safe and secure, for an ageing society that is likely to demand greater transport safety, security and comfort, where infrastructure is “built, maintained and upgraded on the principle of accessibility for all”. (A Sustainable future for transport: Towards an integrated, technology-led and user-friendly system. EU, Luxembourg, 2009)

- Action 4.2: assess further the impacts of cooperative systems and support the development of safety-related cooperative applications, including test and pilots in real traffic situations. (Intelligent Transport Systems in action. Final Report, EU, Luxembourg, 2011)

Type of call
STREP/DEMONSTRATION (1st call – 4 years duration)
7.1 Motivation

Many car owners will continue to be dependent on their car for essential and social travel after retirement, despite efforts to promote public transport and walking and cycling. However, as driving skills generally decline in older people, an important issue is to understand how to best to support them in an increasingly complex driving environment. New advanced driver assistance systems and personalized support may help older drivers to compensate for declining capabilities and to enable them to continue driving at a sufficient safe level. Knowledge of how older drivers adapt to declining driving skills is important. A related subject of interest is how to develop the criteria and circumstances that define whether someone remains capable of driving safely.

7.2 Scope and content

There are three key actions in this task. The first action is to consider ways of enabling older people to continue to drive for longer in a more complex driving environment and the second is to consider ways to more clearly indicate when driving is no longer safe. Re-training courses for older drivers to overcome shortcomings in strategic, tactical and operational driving skills, taking into account individual differences within the older driver population should be developed and evaluated. Training and educational programs aimed at the specific challenges older drivers experience should be based on incident and other available data. It is essential that the effectiveness of these programs is monitored, to determine their efficacy and identify improvements so that they become a common/required activity in the future.

Secondly, it is important to increase awareness of drivers and of those who might advise them (e.g. family doctors) of deteriorating driving skills in order for them to seek retraining, or to self-regulate their driving.

The third action is to improve the procedures that are currently used to test fitness-to-drive, as they are often not aimed at the specific types of problem that older drivers experience. Screening and assessment tools should not be focused only on driving skill, but should include tests of declining cognitive processes in a laboratory environment. Tests that have a higher predictive validity of risk and actual driving performance should be developed. These tests should be based on objective measures or actual driving.
7.3 Expected impacts

1. The development of generally accepted training programs which specifically address the challenges of older drivers in driving and help them to develop the skills to remain driving safely for longer.

2. An increase in self-awareness of older drivers regarding their specific driving difficulties, leading to more effective self-regulation of drivers, improved driving behavior and training.

3. The development of validated and reliable tools to test different driving skills in elderly drivers, also taking into account underlying cognitive capacities. Such tests are useful in measuring fitness to drive, and in indicating specific driving skills that should be supported.

This action addresses the following Commission policies:

- Policy objective 4.1: quality transport that is safe and secure, for an ageing society that is likely to demand greater transport safety, security and comfort, with an “improvement in personal security, the reduction of accidents and of health hazards” being a high priority.
 (A Sustainable future for transport: Towards an integrated, technology-led and user-friendly system. EU, Luxembourg, 2009)

- Strategic objective 1: improve education and training of road users - post-licence training: with the European population ageing, the question of maintaining older people’s aptitude for driving will become increasingly relevant. Actions in this area will have to take into account persons with disabilities and elderly people’s right to mobility and the adoption of alternative solutions.

Type of call
STREP (1st call – 4 years duration)
Collaboration GOAL and TRACY

During the GOAL project there is an ongoing exchange between GOAL and the TRACY project (Transport needs for an Ageing society). The collaboration between the two projects consists of exchange and mutual usage of academic findings, participation in project meetings and presentation of results and the aim to achieve a coordinated strategy.

Main objectives of the TRACY project

The TRACY project links together experts in the field of mobility for groups with special needs. The consortium is further strengthened by the involvement of a wide range of stakeholder groups, which enables the generation of a robust analysis that is sensitive to different needs and expectations in different places. TRACY is concerned with political issues and focuses on how mobility needs of older people are understood across Europe and in Japan, Australia, New Zealand, and the USA, and how the needs are perceived by governments and by the elderly themselves.

Besides the literature review also interviews with national transport authorities in all major European countries with a representative geographical distribution were conducted. The main part of the work undertaken is the identification and analysis of current policy in the countries studied. Based on the results of analysing the state of the art in catering for the transport needs, the main aim of the Tracy project is the development of an TRACY action plan that can help tackle the challenges of providing and promoting safe and adequate usage of all passenger land transport modes in an ageing society. This action plan forms the final output of the TRACY project and it will contain suggestions and recommendations for future policy making and European and national RTD programmes. The final project results are presented to the target audience at an international conference (7th of November, 2013, Brüssel).

Outcomes of TRACY

The first intermediate result is the synthesis of information gathered to provide a comprehensive picture of current activities addressing the mobility needs of an ageing society in the EU and beyond. This work enables comparison and subsequent analysis: The evaluation of current policy practice leads to identifying the ‘bigger picture’ based on the issues identified which provide the foundation for a consideration of mobility in an ageing society in a wider context, and allow for the identification of good practice and shortcomings, in both understanding and defining mobility needs and furthermore of gaps in terms of current policy and respective research focused on specific issues in relation to the mobility needs of older people.

These findings will be translated in the TRACY action plan as a guiding document to support a strategy for future transport in a short and mid-term horizon. This action plan will take into account the recommendations done in the GOAL action plan. It will contain detailed specifications of additional research needed and recommendations for future policymaking in order to better understand and meet the mobility needs in an ageing society.
Information

For further information:

GOAL Project
www.goal-project.eu

TRACY Project
www.tracy-project.eu

European commission of Mobility and Transport
http://ec.europa.eu/transport/index_en.htm

Survey of Health, Ageing and Retirement in Europe (SHARE)
www.share-project.org

The GOAL profiles were derived analyzing data from SHARE wave 4 release 1.1.1, as of March 28th 2013 or SHARE wave 1 and 2 release 2.5.0, as of May 24th 2011 or SHARELIFE release 1, as of November 24th 2010. The SHARE data collection has been primarily funded by the European Commission through the 5th Framework Programme (project QLK6-CT-2001-00360 in the thematic programme Quality of Life), through the 6th Framework Programme (projects SHARE-I3, RII-CT-2006-062193, COMPARE, CIT5-CT-2005-028857, and SHARELIFE, CIT4-CT-2006-028812) and through the 7th Framework Programme (SHARE-PREP, N° 211909, SHARE-LEAP, N° 227822 and SHARE M4, N° 261982). Additional funding from the U.S. National Institute on Aging (U01 AG09740-13S2, P01 AG005842, P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553-01, IAG BSR06-11 and OGHA 04-064) and the German Ministry of Education and Research as well as from various national sources is gratefully acknowledged (see www.share-project.org for a full list of funding institutions).